Triplet exciton formation as a novel photoprotection mechanism in chlorosomes of Chlorobium tepidum.

نویسندگان

  • Hanyoup Kim
  • Hui Li
  • Julia A Maresca
  • Donald A Bryant
  • Sergei Savikhin
چکیده

Chlorosomes comprise thousands of bacteriochlorophylls (BChl c, d, or e) in a closely packed structure surrounded by a lipid-protein envelope and additionally contain considerable amounts of carotenoids, quinones, and BChl a. It has been suggested that carotenoids in chlorosomes provide photoprotection by rapidly quenching triplet excited states of BChl via a triplet-triplet energy transfer mechanism that prevents energy transfer to oxygen and the formation of harmful singlet oxygen. In this work we studied triplet energy transfer kinetics and photodegradation of chlorosomes isolated from wild-type Chlorobium tepidum and from genetically modified species with different types of carotenoids and from a carotenoid-free mutant. Supporting a photoprotective function of carotenoids, carotenoid-free chlorosomes photodegrade approximately 3 times faster than wild-type chlorosomes. However, a significant fraction of the BChls forms a long-lived, triplet-like state that does not interact with carotenoids or with oxygen. We propose that these states are triplet excitons that form due to triplet-triplet interaction between the closely packed BChls. Numerical exciton simulations predict that the energy of these triplet excitons may fall below that of singlet oxygen and triplet carotenoids; this would prevent energy transfer from triplet BChl. Thus, the formation of triplet excitons in chlorosomes serves as an alternative photoprotection mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra.

The interior of chlorosomes of green bacteria forms an unusual antenna system organized without proteins. The steady-spectra (absorption, circular dichroism, and linear dichroism) have been modeled using the Frenkel Hamiltonian for the large tubular aggregates of bacteriochlorophylls with geometries corresponding to those proposed for Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes....

متن کامل

Bacteriochlorophyll e monomers, but not aggregates, sensitize singlet oxygen: implications for a self-photoprotection mechanism in chlorosomes.

Sensitization of singlet delta oxygen (O2(1delta(g))) by bacteriochlorophyll e (BChle) has been investigated to gain a better understanding of the photoprotection mechanism(s) operating in chlorosomes of green photosynthetic bacteria. The sensitization process has been studied in media where BChle forms monomers (acetone and aqueous solutions containing 0.5% Triton X-100 [TX]) and in systems wh...

متن کامل

Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly.

Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioid...

متن کامل

Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes.

Chlorosomes of the green sulfur bacterium Chlorobium tepidum comprise mostly bacteriochlorophyll c (BChl c), small amounts of BChl a, carotenoids, and quinones surrounded by a lipid-protein envelope. These structures contain 10 different protein species (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) but contain relatively little total protein compared to other photosynthetic a...

متن کامل

Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401.

Time-resolved, laser-induced changes in absorbance, delta A(lambda; t), have been recorded with a view to probing pigment-pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2007